Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Over the last decade, collaborative efforts in plant evolutionary research have elucidated the phylogenetic relationships in the green plant lineage and provided insights into the emergence of land plants from a group of terrestrial and freshwater streptophyte algae. A foremost finding was that the genetic underpinnings of several key traits emerged much earlier than land plants — they were present in their streptophyte algal pro- genitors. Currently, the field is at a crossroads, transitioning from genomics-informed descriptions of strep- tophyte algae to a functional understanding of molecular mechanisms underlying their unique physiology, as well as to understanding their origin and evolution. Major progress has been made in the development of valuable genomic resources, new tools and new model systems in streptophyte algae. In this review, we high- light community-developed resources to study these closest algal relatives of land plants to gain insights into the evolution of land plant traits.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Abstract The Japanese rhinoceros beetleTrypoxylus dichotomusis a giant beetle with distinctive exaggerated horns present on the head and prothoracic regions of the male.T. dichotomushas been used as a research model in various fields such as evolutionary developmental biology, ecology, ethology, biomimetics, and drug discovery. In this study, de novo assembly of 615 Mb, representing 80% of the genome estimated by flow cytometry, was obtained using the 10 × Chromium platform. The scaffold N50 length of the genome assembly was 8.02 Mb, with repetitive elements predicted to comprise 49.5% of the assembly. In total, 23,987 protein-coding genes were predicted in the genome. In addition, de novo assembly of the mitochondrial genome yielded a contig of 20,217 bp. We also analyzed the transcriptome by generating 16 RNA-seq libraries from a variety of tissues of both sexes and developmental stages, which allowed us to identify 13 co-expressed gene modules. We focused on the genes related to horn formation and obtained new insights into the evolution of the gene repertoire and sexual dimorphism as exemplified by the sex-specific splicing pattern of thedoublesexgene. This genomic information will be an excellent resource for further functional and evolutionary analyses, including the evolutionary origin and genetic regulation of beetle horns and the molecular mechanisms underlying sexual dimorphism.more » « less
- 
            Summary Despite their key phylogenetic position and their unique biology, hornworts have been widely overlooked. Until recently there was no hornwort model species amenable to systematic experimental investigation.Anthoceros agrestishas been proposed as the model species to study hornwort biology.We have developed anAgrobacterium‐mediated method for the stable transformation ofA. agrestis, a hornwort model species for which a genetic manipulation technique was not yet available.High transformation efficiency was achieved by using thallus tissue grown under low light conditions. We generated a total of 274 transgenicA. agrestislines expressing the β‐glucuronidase (GUS), cyan, green, and yellow fluorescent proteins under control of the CaMV 35S promoter and several endogenous promoters. Nuclear and plasma membrane localization with multiple color fluorescent proteins was also confirmed.The transformation technique described here should pave the way for detailed molecular and genetic studies of hornwort biology, providing much needed insight into the molecular mechanisms underlying symbiosis, carbon‐concentrating mechanism, RNA editing and land plant evolution in general.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
